On-line catalogue and orders (secure paiement, VISA or MASTERCARD only)

Journals available by subscription

Annales scientifiques de l'ENS

Astérisque

Bulletin de la SMF

Mémoires de la SMF

Revue d'Histoire des Mathématiques

Gazette des Mathématiciens

Books

Astérisque

Cours Spécialisés

Documents Mathématiques

Mémoires de la SMF

Panoramas et Synthèses

Séminaires et Congrès

Jean Morlet Chair Series

SMF/AMS Texts and Monographs

La Série T

Volumes "Journée Annuelle"

Other Books

Donald E. Knuth - French translations

Nicolas Bourbaki's seminar new edition

Jean Leray's scientific works new edition

Revue de l'Institut Elie Cartan

Electronic Editions

Annales scientifiques de l'ENS

Bulletin de la SMF

Revue d'Histoire des Mathématiques

Séminaires et Congrès

More information / Subscription

Publications for a general public

L'explosion des mathématiques (smf.emath.fr)

Mathématiques L'explosion continue (smf.emath.fr)

Zoom sur les métiers des maths (smf.emath.fr)

Zoom sur les métiers des mathématiques et de l'informatique (smf.emath.fr)

Où en sont les mathématiques ?

La Série T

For the authors

Submission of manuscripts

Formats and documentation

More info

Electronic distribution list (smf.emath.fr)

Information for bookselers and subscription agencies (smf.emath.fr)

Publications de la SMF
fr en
Your IP number: 3.239.58.199
Access to elec. publ.: SémCong

Annales scientifiques de l'ENS

Presentation of the publication

Titles

Last Titles

Editorial staff committee / Secretary

Serie 4:
Serie 3:
Serie 2:
Serie 1:

Search


Catalogue & orders

Annales scientifiques de l'ENS - Titles - série 4, 51 (2018)

Titles < série 4, 51

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE, série 4 51, fascicule 4 (2018)

Jacob van den Berg, Demeter Kiss, Pierre Nolin
Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters
Annales scientifiques de l'ENS 51, fascicule 4 (2018), 1017-1084

Télécharger cet article : Fichier PDF

Résumé :
Percolation gelée par volume en deux dimensions : déconcentration et prévalence des composantes connexes mésoscopiques
La percolation gelée sur l'arbre binaire a été introduite par Aldous [1], inspiré par les transitions sol-gel. Nous étudions une version de ce modèle sur le réseau triangulaire, pour laquelle les composantes connexes arrêtent de croître («gèlent») dès qu'elles contiennent au moins N sommets, où N est un paramètre (typiquement grand). Pour le processus dans certains domaines finis, nous prouvons une «séparation d'échelles», et nous l'utilisons pour démontrer une propriété de déconcentration. Ensuite, pour le processus dans tout le plan, nous établissons une comparaison précise avec le processus dans des domaines finis adéquats, et nous obtenons qu'avec grande probabilité (lorsque N ), l'origine appartient, dans la configuration finale, à une composante connexe mésoscopique, c'est-à-dire, une composante qui contient un grand nombre de sommets, mais beaucoup moins que N (et qui est donc non-gelée). Pour ce travail, nous développons de nouvelles propriétés intéressantes de la percolation presque-critique, en particulier des formules asymptotiques faisant intervenir la probabilité de percolation (p) et la longueur caractéristique L(p) quand p p_c.

Mots-clefs : Percolation gelée, percolation presque-critique, inégalités de déconcentration, transitions sol-gel, formation de motifs, criticalité auto-organisée.

Abstract:
Frozen percolation on the binary tree was introduced by Aldous [1], inspired by sol-gel transitions. We investigate a version of the model on the triangular lattice, where connected components stop growing (“freeze”) as soon as they contain at least N vertices, where N is a (typically large) parameter. For the process in certain finite domains, we show a “separation of scales” and use this to prove a deconcentration property. Then, for the full-plane process, we prove an accurate comparison to the process in suitable finite domains, and obtain that, with high probability (as N ), the origin belongs in the final configuration to a mesoscopic cluster, i.e., a cluster which contains many, but much fewer than N, vertices (and hence is non-frozen). For this work we develop new interesting properties for near-critical percolation, including asymptotic formulas involving the percolation probability (p) and the characteristic length L(p) as p p_c.

Keywords: Frozen percolation, near-critical percolation, deconcentration inequalities, sol-gel transitions, pattern formation, self-organized criticality.

Class. math. : 60K35, 82B43.


ISSN : 0012-9593
Publié avec le concours de : Centre National de la Recherche Scientifique

Bibliographie:

1
Aldous, David J.
The percolation process on a tree where infinite clusters are frozen
Math. Proc. Cambridge Philos. Soc. 128 (2000) 465–477
Math Reviews MR1744108
2
Beffara, Vincent and Nolin, Pierre
On monochromatic arm exponents for 2D critical percolation
Ann. Probab. 39 (2011) 1286–1304
Math Reviews MR2857240
3
Bennett, G.
Probability inequalities for the sum of independent random variables
Journal of the American Statistical Association 57 (1962) 33–45
4
Bertoin, Jean
Fires on trees
Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 909–921
Math Reviews MR3052398
5
Borgs, C. and Chayes, J. T. and Kesten, Harry and Spencer, J.
The birth of the infinite cluster: finite-size scaling in percolation
Comm. Math. Phys. 224 (2001) 153–204
Math Reviews MR1868996
6
Bressaud, Xavier and Fournier, Nicolas
One-dimensional general forest fire processes
Mém. Soc. Math. Fr., vol. 132, 2013
Math Reviews MR3135077
7
Camia, Federico and Newman, Charles M.
Two-dimensional critical percolation: the full scaling limit
Comm. Math. Phys. 268 (2006) 1–38
Math Reviews MR2249794
8
Damron, Michael and Sapozhnikov, Artëm
Limit theorems for 2D invasion percolation
Ann. Probab. 40 (2012) 893–920
Math Reviews MR2962082
9
Damron, Michael and Sapozhnikov, Artëm and Vágvölgyi, Bálint
Relations between invasion percolation and critical percolation in two dimensions
Ann. Probab. 37 (2009) 2297–2331
Math Reviews MR2573559
10
Dürre, Maximilian
Existence of multi-dimensional infinite volume self-organized critical forest-fire models
Electron. J. Probab. 11 (2006) no. 21, 513–539
Math Reviews MR2242654
11
Esseen, C. G.
On the concentration function of a sum of independent random variables
Z. Wahrscheinlichkeitstheorie und verw. Gebiete 9 (1968) 290–308
Math Reviews MR0231419
12
Garban, Christophe and Pete, Gábor and Schramm, Oded
Pivotal, cluster, and interface measures for critical planar percolation
J. Amer. Math. Soc. 26 (2013) 939–1024
Math Reviews MR3073882
13
Garban, Christophe and Pete, Gábor and Schramm, Oded
The scaling limits of near-critical and dynamical percolation
J. Eur. Math. Soc. 20 (2018) 1195–1268
Math Reviews MR3790067
14
Grimmett, Geoffrey
Percolation
Grundl. math. Wiss., vol. 321, Springer, Berlin, 1999
Math Reviews MR1707339
15
Kesten, Harry
The critical probability of bond percolation on the square lattice equals 12
Comm. Math. Phys. 74 (1980) 41–59
Math Reviews MR575895
16
Kesten, Harry
Scaling relations for 2D-percolation
Comm. Math. Phys. 109 (1987) 109–156
Math Reviews MR879034
17
Kesten, Harry and Zhang, Yu
A central limit theorem for ``critical'' first-passage percolation in two dimensions
Probab. Theory Related Fields 107 (1997) 137–160
Math Reviews MR1431216
18
Kiss, Demeter
Frozen percolation in two dimensions
Probab. Theory Related Fields 163 (2015) 713–768
Math Reviews MR3418754
19
Kiss, Demeter and Manolescu, Ioan and Sidoravicius, Vladas
Planar lattices do not recover from forest fires
Ann. Probab. 43 (2015) 3216–3238
Math Reviews MR3433580
20
Lawler, Gregory F. and Schramm, Oded and Werner, Wendelin
Values of Brownian intersection exponents. I. Half-plane exponents
Acta Math. 187 (2001) 237–273
Math Reviews MR1879850
21
Lawler, Gregory F. and Schramm, Oded and Werner, Wendelin
Values of Brownian intersection exponents. II. Plane exponents
Acta Math. 187 (2001) 275–308
Math Reviews MR1879851
22
Lawler, Gregory F. and Schramm, Oded and Werner, Wendelin
One-arm exponent for critical 2D percolation
Electron. J. Probab. 7 (2002) no. 2
Math Reviews MR1887622
23
Le Cam, Lucien
On the distribution of sums of independent random variables
in Proc. Internat. Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif
(1965) 179–202
Math Reviews MR0199871
24
Liggett, Thomas M.
Interacting particle systems
Classics in Mathematics, Springer, Berlin, 2005
Math Reviews MR2108619
25
McLeish, D. L.
Dependent central limit theorems and invariance principles
Ann. Probab. 2 (1974) 620–628
Math Reviews MR0358933
26
27
Nolin, Pierre
Near-critical percolation in two dimensions
Electron. J. Probab. 13 (2008) no. 55, 1562–1623
Math Reviews MR2438816
28
Ráth, Balázs
Mean field frozen percolation
J. Stat. Phys. 137 (2009) 459–499
Math Reviews MR2564286
29
Ráth, Balázs and Tóth, Bálint
Erdős-Rényi random graphs + forest fires = self-organized criticality
Electron. J. Probab. 14 (2009) no. 45, 1290–1327
Math Reviews MR2511285
30
Smirnov, Stanislav
Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits
C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 239–244
Math Reviews MR1851632
31
Smirnov, Stanislav and Werner, Wendelin
Critical exponents for two-dimensional percolation
Math. Res. Lett. 8 (2001) 729–744
Math Reviews MR1879816
32
Stockmayer, Walter H.
Theory of molecular size distribution and gel formation in branched-chain polymers
Journal of Chemical Physics 11 (1943) 45–55
33
van den Berg, Jacob and Brouwer, R.
Self-destructive percolation
Random Structures Algorithms 24 (2004) 480–501
Math Reviews MR2060632
34
van den Berg, Jacob and Brouwer, R.
Self-organized forest-fires near the critical time
Comm. Math. Phys. 267 (2006) 265–277
Math Reviews MR2238911
35
van den Berg, Jacob and Conijn, R. P.
The gaps between the sizes of large clusters in 2D critical percolation
Electron. Commun. Probab. 18 (2013) 1–9
Math Reviews MR3145048
36
van den Berg, Jacob and Tóth, Bálint
A signal-recovery system: asymptotic properties, and construction of an infinite-volume process
Stochastic Process. Appl. 96 (2001) 177–190
Math Reviews MR1865354
37
van den Berg, Jacob and de Lima, Bernardo N. B. and Nolin, Pierre
A percolation process on the square lattice where large finite clusters are frozen
Random Structures Algorithms 40 (2012) 220–226
Math Reviews MR2877564
38
van den Berg, Jacob and Kiss, Demeter and Nolin, Pierre
A percolation process on the binary tree where large finite clusters are frozen
Electron. Commun. Probab. 17 (2012) 1–11
Math Reviews MR2872571
39
van den Berg, Jacob and Nolin, Pierre
Two-dimensional volume-frozen percolation: exceptional scales
Ann. Appl. Probab. 27 (2017) 91–108
Math Reviews MR3619783
40
Werner, Wendelin
Lectures on two-dimensional critical percolation
in Statistical mechanics
IAS/Park City Math. Ser. 16 (2009) 297–360
Math Reviews MR2523462
41
Yao, Chang-Long
A CLT for winding angles of the arms for critical planar percolation
Electron. J. Probab. 18 (2013) no. 85
Math Reviews MR3109624
42
Zhang, Yu
A martingale approach in the study of percolation clusters on the Z^d lattice
J. Theoret. Probab. 14 (2001) 165–187
Math Reviews MR1822899